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Segment Motion in the Reptation Model of Polymer
Dynamics. II. Simulations
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We present simulation data for the motion of a polymer chain through a regular
lattice of impenetrable obstacles (Evans-Edwards model). Chain lengths range
from N = 20 to N = 640, and time up to 107 Monte Carlo steps. For N> 160,
for the central segment we find clear t1/4 behavior as an intermediate asymptote.
The expected t1/2 range is not yet developed. For the end segment also the tl/4

behavior is not reached. All these data compare well to our recent analytical
evaluation of the reptation model, which shows that for shorter times (t < 104)
the discreteness of the elementary motion cannot be neglected, whereas for
longer times and short chains (N< 100) tube renewal plays an essential role also
for the central segment. Due to the very broad crossover behavior, both the
diffusion coefficient and the reptation time within the range of our simulation do
not reach the asymptotic power laws predicted by reptation theory. We present
results for the center-of-mass motion, showing the expected intermediate t1/2

behavior, but again only for very long chains. In addition we show results for
the motion of the central segment relative to the center of mass, where in some
intermediate range we see the expected increase of the effective power beyond
the t1 /4 law, before saturation sets in. Analysis and simulations agree on defining
a new set of criteria as characteristic for reptation of finite chains.
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I. INTRODUCTION

An understanding of the motion of a chain molecule in a surrounding of
impenetrable obstacles is of great interest in the physics of polymer melts
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or dense solutions as well as for polymers diffusing through gels. With spe-
cial regard to the latter system De Gennes suggested the reptation model.(1)

Basic to this model is the observation that the crosslinked structure of the
gel for short times restricts the motion of the macromolecule to a tube
defined by its initial configuration. The motion proceeds by curvilinear
diffusion of little wiggles of "spared length" along the tube. The destruction
of the initial tube ("tube renewal") is due to the motion of the chain ends.
These may draw back into the tube, thus shortening the tube and creating
new wiggles of spared length, or they may unfold and thus destroy spared
length, thus prolonging the tube in some random direction. This is the
natural thermal motion of a flexible chain between topological constraints.

Proposed originally for motion through rigid gels, this model exten-
sively has been applied to melts or dense solutions.(2) It is generally accepted
as a basic scenario of polymer dynamics. A critical examination,(3) how-
ever, shows that the experimental or computer-experimental evidence for
the quantitative reliability of the model is not particularly strong. Searching
for the asymptotic power laws predicted by reptation theory one typically
finds a range of exponents differing from the predictions, a finding often
interpreted as crossover behavior from Rouse-type motion to reptation.
This is little more than an excuse, since—with the exception of Doi's theory
of the melt viscosity(4)—no effort seems to have been spent to really work
out the predictions of the reptation model beyond (intermediate) asymp-
totics. Thus, since not only the experiments but also the simulations mostly
are concerned with melts or with an immobile, but disordered configura-
tion of obstacles, it is not at all clear whether the results reflect intrinsic
properties of reptation or are dominated by other mechanisms like entropic
traps in disordered systems or relaxation of the surrounding in melts.

To proceed we need precise knowledge of the quantitative implications
of the reptation model in the (computer-) experimental range of time and
chain length. We therefore analytically have worked out detailed quan-
titative predictions of the model, and we have carried through extensive
simulations. All our work is concerned with the original reptation scenario:
motion of a discrete chain through an ordered lattice of impenetrable
obstacles, which confines the internal motion of the chain to a very narrow
tube. Our analytical work concentrates on the motion of individual beads.
As long as the bead does not leave the original tube, its motion can be
calculated rigorously. Tube renewal and thus the motion of the chain ends
can be treated only approximately, and we use an approximation inspired
by random walk theory. Details and results of our analytical work may be
found in the preceeding paper.(5)

The present paper is devoted to our simulations. In Section II we
introduce a Monte Carlo model, which first has been proposed by Evans
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and Edwards.(6) We also briefly describe our analytical model as far as
needed for some of the arguments to follow, and we discuss the relation
among the Monte-Carlo and analytical models. In Section III we review
results of previous simulations of the Evans-Edwards model, compare to
corresponding results of our simulations, and discuss the relevant time
scales. Sections IV and V are devoted to a detailed comparison with our
theory, where in Section IV we treat the motion of the central bead inside
the tube, and in Section V we are concerned with tube renewal. Quantities
involving the center-of-mass, for which at present we have no new analy-
tical results, are discussed in Section VI. Section VII summarizes our
findings. Preliminary results of our analytical work and our simulations
have been published in ref. (7)

II. MODELS

A. Monte Carlo Model

The Evans-Edwards model(6) considers the chain configuration as a
random walk of N ( M C ) — 1 steps ("segments") on a cubic lattice. The lattice
constant f0 henceforth is taken as the unit of length: f 0 = 1 . The configura-
tion is fixed by giving the positions {r1,..., rN(Mc)} of the endpoints of all
segments ("beads"). The length of segment j equals 4> by construction,
\r j+1 — rj| =l0. The obstacles form a second cubic lattice, of lattice con-
stant m. lo, placed such that its lattice points coincide with centers of the
cells of the first lattice. The edges of this lattice are considered as
impenetrable. Ref. 6 uses m = 1, 2,..., 10, but we consider only m = 1, thus
taking the tube as narrow as possible. This should show reptation in
clearest form. As illustrated in Fig. 1, this model eliminates all kink-type
motions of the chain and leaves only hairpins, i.e., subsequent segments of
opposite direction: rj+1 — rj= — (rj — r j _ 1 ) , free to move. Of course also the
end beads can move freely.

Clearly with regard to the static properties this model is identical to
a simple random-walk chain. With our choice of the narrowest tube, m = 1,
also the dynamics is most simple. The obstacle lattice comes into play only
implicitly in restricting the motion to that of hairpins and chain ends.
We start with an initial random walk configuration of the chain. In one
elementary step we randomly choose one bead. If it happens to be the tip
of a hairpin or a chain end, it is moved with probability 1/6 to one of its
6 possible positions (including its original position, of course). This com-
pletes the elementary move. Monte Carlo time t ( M C ) is measured in (on the
average) one attempted move per bead. The simulations extended to
t ( M c ) = 108, and chains of lengths N(MC) = 20, 40, 80, 160, 320, 640 were
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Fig. 1. An allowed hairpin-move and a forbidden kink-jump, illustrated for a chain
embedded in a square lattice with obstacles in the centers of the cells. Our simulation uses the
3-dimensional version of this model.

used. We measured in each run correlations over time intervals t1
(MC) —

t(
0

MC) < 107, averaging over t ( M C ) ("moving average"). In addition the data
were averaged over up to 40 independent runs. This is important in par-
ticular for the longer chains, where the equilibration time T(

2
MC) of the

hairpins comes close to the total time of the run (see Section 3.2).
For the longest chains (N =320, 640) and largest times (t (MC)«107)

the standard deviation of our data reaches 6%. Due to the moving time
average it rapidly decreases with decreasing chain length and time, being
less than 3% for t(MC) < 105, for all chain lengths.

B, Analytical Model

We use a version of De Gennes' reptation model.(1,5) discrete in time
and space. The tube is taken as a chain of N segments, connecting beads
numbered 0, 1,..., N. Particles, each representing a spared length fs, are
sitting on the beads of that chain. The average density of these particles
is p0. The particles randomly and independently hop among neighbouring
beads, with hopping probability p. They do not interact, so that a given
particle does not feel the presence of the others. If a particle moves over a
bead, it drags it along and displaces it by a distance fs along the tube. (For
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hairpin motion this is illustrated in Fig. 1b of ref. 7.) Reaching a chain end
(bead 0 or N), a particle is absorbed by a virtual reservoir. These reservoirs
also randomly emit particles at a rate adjusted to pertain the average den-
sity p0. They serve to ease the analysis of the in principle grand canonical
problem.

To establish the connection to the physical motion of the beads we
note that the displacement along the tube of some bead j within time inter-
val t is given by fs \n(j, t)\, where n(j, t) gives the number of particles
having passed bead j from one direction, subtracted by the number of par-
ticles coming from the other direction. Since the tube conformation itself is
a random walk in space, bead j in space has moved an average distance

(Cf. Eq. (1.2.8); in the sequel ref. 5 will be refered to as I.) In Eq. (2.1) the
pointed brackets denote the average over the chain configurations, and the
bar indicates the average over particle diffusion.

Equation (2.1) holds as long as bead; stays in the initial tube. Tube
renewal is driven by the emission and absorption of particles by the reser-
voir. Emission of a particle shortens the tube by 4 at the end considered.
Thus within time interval t the tube from end zero is destroyed up to the
bead j< =lsnmax(t), where (— nmax(t)) is the largest negative fluctuation in
the occupation number of reservoir 0 within time interval t. Since at time
t the tube on the average has been shortened by lnsmax(t) steps and then
rebuilt by another lsnmax(t) randomly chosen steps, we find for the motion
of the endsegment (cf. Eq. (1.2.12))

valid for times t smaller than the tube renewal time T3. Combining these
considerations we find the somewhat complicated expression (1.2.13) for
the motion of an arbitrary bead including tube renewal effects.

All these are exact expressions within the frame of our model, holding
as long as the original tube is not destroyed completely. It turns out that
Eq. (2.1) can be evaluated rigorously, whereas Eq. (2.2) as well as the
tube renewal effects on the motion of an arbitrary bead can be handled
only approximately. The stochastic process n(0, t), giving the occupation of
reservoir 0, is correlated by the fact that a particle emitted may be reab-
sorbed at some later time, the decay time of the correlation being given by
the time T2 a particle needs to diffuse over the whole chain. This correlation
renders an exact evaluation of nmax(t) impossible. As explained in detail in I,
Section V we evaluate nmax(t) in a "mean hopping rate" approximation,
calculating the contribution to nmax(t) of a time step s, 0 <s ^t as the
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contribution of an uncorrelated process with properly adjusted hopping
rate. In a similar spirit we have constructed an approximation for the tube
renewal effects on arbitrary beads. Our explicit expressions for g 1 ( j , N, t)
will be recalled later in the context of data analysis.

C. Relation among the Models

Obviously the particles of the theoretical model roughly correspond to
the hairpins, and for long chains and large time, where hopefully the
influence of the microstructure is negligible, we expect both models to
yield identical results. In practice, however, it is not clear whether the
experiments reach such a universal regime, and a more detailed discussion
of the relation among the models is appropriate.

We first consider the chain lengths. The endbeads of the MC-chain
correspond to the particle reservoirs, and a hairpin absorbs two beads.
A hairpin thus effectively walks along a chain of N(MC) — 4 interior beads.
This must be compared to the theoretical model, where a particle hops
along a chain of N — 1 interior beads. Thus we should identify

For the shorter chains (N (MC)< 100), this correction cannot be neglected.
Identifying hairpins and particles we should take the spared length

fs = 2. The density p0 is less well defined. For the simple random-walk type
MC-chain it is not hard to determine the full statistics of the side-branches,
i.e., of tree-like structures in which each lattice bond is occupied by an even
number of segments. In the limit of long chains the average total number
of segments in such side branches amounts to(8) W(MC)/3, whereas the
average number of simple hairpins (of two segments each) tends to
N(MC)/9. Thus the remaining N(MC)/9 segments are contained in larger
side-branches, which can be seen as a result of a fusion of simple hairpins.
In the particle picture this corresponds to an interaction of particles sitting
on the same bead, and with this interpretation we should choose p0& 1/6.
However, also other complications must be noted: For a hairpin lying on
the chain like in the right part of Fig. 1, the separation of the configuration
into hairpin and backbone of the chain is not unique, this configuration in
fact showing two mobile points. Thus these considerations suggest an order
of magnitude for fx, p0, rather than giving precise values. Taking ts, p0 as
fit parameters, we in Section 4 will find that the data rather precisely deter-
mine the combination
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which, as shown in I, Section IV is the only combination relevant in the
universal large time regime. With l2p0 fixed, a range of values 0.15<
pa < 0.3 yields equivalent fits, and by convention explained below we
choose

leading to

These parameters are of the expected order of magnitude, but they also
show that the identification of particles and "free" hairpins should not be
taken to literally. Rather the hairpin motion is renormalized by interaction
effects, the particles representing "quasi-hairpins."

We finally consider the relation among the time scales. The theoretical
results, considered as function of

for p • t > 1 essentially are independent of the hopping rate p. We by con-
vention take p = 1/5, and we henceforth always will use the variable t. The
relation among t and t(MC) defines the time scale r.

A fit to experiment (see Section 4) fairly precisely fixes T at a value

Thus about 17 MC moves correspond to the displacement of a particle by
one step. This again is a reasonable result, since following the microscopic
motion of a hairpin we may estimate that on the average of the order of
10 moves are needed for a hairpin to jump from one segment to the next.

Having discussed the relation among the parameters of the theoretical
and the MC-model we still need to consider the measured quantity

Let j be some interior bead of the MC-chain. With probability pH= 1/9 it
sits in the tip of a simple hairpin, a configuration which in the theoretical
model effectively is projected down to the base of the hairpin. Taking into
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account only simple hairpins we thus find for the relation of g1
(MC) to the

g1 of the analytical model

where we took into account the relation among N(MC) and N as well as the
different counting of the beads. This shows that g1

(MC) and g1 differ by an
additive contribution c0

where the simple-hairpin contribution to c0 is found as

More complicated side branches will contribute also, but we observe (see
Section 4) that reasonable changes of c0 in fitting to the data can be com-
pensated by readjusting p0. We thus by convention choose the value (2.11),
which then fixes p0 to the value (2.5). We have checked that for
microscopic times 10<t (MC)<50, g1

(MC) is well represented as

so that this choice of c0 is well justified.
For the endsegments the correction is more important. These in a

single move will jump a mean squared distance

and this motion is not taken into account in the theoretical model. We thus
have

We have checked that the correction c1 = 2 precisely takes into account the
difference in the motion of the end segment and the adjacent interior seg-
ment of the Monte-Carlo chain.

Though these corrections are microstructure effects, they cannot
simply be ignored. In particular it is important to correct for the endseg-
ment motion, since g1

(MC)(1, N ( M C ) t(MC)) reaches values of the order 100
only for t(MC)*106.



Segment Motion in Reptation Model of Polymer Dynamics. II 1383

Besides g1
(MC) we also have measured the cubic invariant

It is easily checked that this function for an interior bead in our model
reduces to the second moment of n(j, t)

this relation holding as long as the bead stays in the initial tube. For the
endsegment the expression is more complicated and given in Appendix B
of I. Again the relation among g1 and g1

(MC) involves microstructure correc-
tions, which, however, are more difficult to estimate and will not be con-
sidered.

III. A FIRST INSPECTION OF THE SIMULATION RESULTS

A. Comparison to Previous Work

Reptation theory predicts power law behavior

Here Tn = O(N°) is the microscopic time, till the segment motion feels the
constraining environment, T2 = O(N2) is the equilibration time of the inter-
nal motion, and T3 = O(N3) is the reptation time, needed for a complete
destruction of the original tube. The last line of Eq. (3.1) identifies the dif-
fusion constant of the chain as D~ 1 /N 2 .

Evans and Edwards(6) introduced the above described Monte Carlo
model to test these predictions. They used obstacle lattices of spacing m • l0,
m< 10, and chains of length N(MC) <80. The runs seem to extent up to
t(MC) ~ 103. Clearly according to present day facilities this is a fairly small
scale simulation. Still within the scatter of the data the results for the
smallest spacings m=1,2 seem to verify the predictions (3.1). In particular
the authors observe D~N2, T3~N3, as well as t1/4 regimes and t1/2

regimes for the motion of the central segment. To check these results,
Fig. 2 shows our data for g1

(MC)(N (MC)/2, N ( M C ) , t ( M c ) ) in the common
doubly-logarithmic representation. As is obvious, a tl/4 regime starts
around t ( M C )^10 3 and barely is observable for N ( M C ) = 80. It fully is
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Fig. 2. loglo(g(
1

MC)((N/2)(MC), N ( M C ) , t ( M C ) ) ) as function of 1og l o(( (Mc)) for W(MC) = 20, 40,
80, 160, 320, 640. The straight lines correspond to power laws g1, ~t1/3, t1/4, t1/2 or g1 ~t.

developed only for larger chain lengths. A t1/2 regime is not observable for
N ( M C ) ^ 160. It may be present for larger chains but its unambiguos iden-
tification needs at least a further decade in time. Recall that these data are
taken for the obstacle lattice of highest density, m = 1, as all our data. We
conclude that the observation of ref. 6 amounts to a misinterpretation of
the direct crossover from the initial behavior, which roughly follows a t1/3

law, to free diffusion, as seen here for short chains.
Deutsch and Madden(9) used the Evans-Edwards model with m - \ to

measure the diffusion coefficient D by following the center-of-mass motion
of the chain:

Measuring chains up to length 100 they found D~(N(MC)] -2.5, i.e., a con-
siderably faster decrease than predicted by reptation theory. Our own data
for the center-of-mass motion are shown in Fig. 3. We clearly can extract
the diffusion coefficients up to N(MC) = 80. For N (MC)^320 only an
upper bound D<0.2(N ( M C ) ) - 2 can be given. Our measured values of
( N ( M C ) ) 2 . D are plotted against (N(MC))-1/2 in Fig. 4. We also included
data extracted from Fig. 3 of ref. 9. Clearly the two sets of data are com-
pletely consistent. They nicely are fitted by the ansatz
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Fig. 3. log10R
2
cm, R2

cm=<(Rcm(t (CM)}-Rcm(0))2> as function of log lot (Mc). Chain lengths
N(MC) = 20, 40, 80, 160, 320, 640. The lines indicate the asymptotic behavior Dt ( M C ) (3.2). The
thus determined D ( N ( M C ) ) is further evaluated in Fig. 4.

this form being motivated by Doi's work.(4,9) It, however, is clear that the
range of chain lengths from 10 to 160 in Fig. 4 is insufficient to fully justify
an ansatz leading to such a large first order correction. Still it shows that
with chain lengths that presently can be reached, we are far from extracting
the large-N limit of the diffusion coefficient.

B. Time Scales

The reptation time T3 gives the time needed to destroy the tube. It
may be defined in terms of the decay of the end-to-end vector correlations

Fig. 4. ( N ( M C ) ) 2 D as function of ( N ( M C ) ) - 1 / 2 . Dots: present work, ellipsoids: ref. 9. The
straight line represents Eq. (3.3).
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of the chain,(1) but for the present work another definition is more con-
venient, both theoretically and experimentally. We define T3 by the relation

which via Eq. (2.2) implies

where R2
e is the mean squared-average end-to-end vector. Thus within time

interval T3 the endsegment has moved mean squared distance R2
e. Our

simulation data allow for the determination of T3 for N(MC) < 160, and our
experimental results together with the theoretical curve are shown in Fig. 5.
Being based on an approximation the theory lies about 20% above the
datapoints. This suggests that our approximation underestimates nmax(t).
Both theory and data, however, consistently show that it needs chain
lengths much larger than N ( M C ) = 200 to approach the asymptotic N3

behavior. Indeed, the theoretical asymptote, calculated from Eq. (1.5.50), is
found as

suggesting that chain lengths much larger than 103 are needed. This is quite
consistent with our finding for the diffusion coefficient.

Another important time scale of the model is the internal equilibration
time T2 of the chain. It gives the time a hairpin needs to diffuse over the
whole chain, so that for t»T2 the motion of all beads is correlated.

Fig. 5. ( N ( M C ) ) 3 T ( M C ) as function of N ( M C ) . The curve gives the theoretical prediction. The
broken line gives the theoretical asymptote. Points from our simulations.
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Theoretically T2 can be identified with the Rouse time, i.e., the longest
internal relaxation time of a free chain: pT2 = N2/n2. A practicable and
precise experimental definition is not easy. Heuristically we could think of
the time at which the motion of the central segment bends over from tx1

x1 K 1/4 towards tx2 x2 > 0.5, but this crossover is quite broad and the
power law regimes are poorly defined for shorter chains. We thus here are
content with the theoretical definition, valid for long chains:

Transforming to the Monte Carlo time, we find

where we ignore the difference among N, N ( M C ) . Comparing to Figs. 2 or
3 we note that this marks the point, where definite deviations from the
initial behavior can be seen. Combining Eqs. (3.6), (3.8) we find

Since both, T (
2

MC) and T (
3

MC), mark fairly broad crossover regions, the
ratio (3.9) must take values of order 103 before we can see the intermediate
tl/2 behavior. (Cf. the second line of Eq. 3.1.) Only the longest chain
N = 640 shows a sufficiently targe ratio T(

3
MC) /T (

2
MC). But then the total

MC time 107 is not much larger than T(
2

MC) = 0.7 .106. Even with the
present data we thus have no chance to verify the t1/2 law. Qualitative,
not quantitative, indications can be found however, as is discussed in
Section VI. These findings are completely consistent with typical results
found in the literature for simulations of melts.

IV. MOTION INSIDE THE TUBE

A. Analysis of gn(N//2, N, t)

In Eqs. (1.4.1), (1.4.2), (1.3.12) we have given the rigorous theoretical
result for g 1 ( j , N, t) for motion within the tube. To keep track of this condi-
tion we here denote this result as g i ( j , N, t).
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We use the variable i = pt, and we somewhat simplified the expression, the
simplification being valid for pt £ 1. The correction function F 1 ( j , t) reads
(Eq. 1.3.26)

It arises from the discreteness of the stochastic variable n(j, t) and is negli-
gible for z £ 25.

As has been discussed in I, Section 4, for long chains and times so
large that F 1 ( z ) can be ignored, g i ( j , N, t) takes the form (cf. Eq. 1.4.10):

It is in this large time region that we determine the nonuniversal param-
eters. Specifically we get one relation from fitting the t1/4 plateau.

Since no t1 /2 regime properly is reached by the data, we determine T, £2p0

separately by fitting to the crossover at t~T2, where the t1/4 regime
terminates. In the fit we exclusively used data for the longest chain:
N(MC) = 640, so that we have a large region affected neither by initial
effects nor by tube renewal. We find the values l2p0=1.23 and
T = 6.092 • 10-2 cited in Section II.C.

With £2
sp0 fixed, a variation of p0 only influences the argument of F1

in Eq. (4.1). Increasing p0 we decrease the time range where F1 is important.
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Since F1(0) = l, we thus also increase the initial slope of g i ( j , N, t). As
mentioned in Section II.C, these changes to some extent can be compen-
sated by a change of c0 that relates g (MC) to g1. Good fits can be obtained
for 0.14 < c0 £ 0.25, with varying p0 from 0.3 to 0.18. For t 10, g1(j, N, t)
varies by about 15%. Larger changes of the parameters lead to a mismatch
in the curvature of the theoretical and experimental results. We finally fix
all parameters by choosing C0 = 2/9, leading to p0 = 0.22.

Figure 6 shows our results for log10(g1((N/2), N, t)/gass(t)) as function
of log10(t), where gass(t) gives the intermediate asymptotics defined by the
first line of Eq. (4.5). This plot focusses on the region of t1/4 behavior. As
mentioned above, the parameters have been fitted for N(MC) = 640, the
remaining results involving no further fitting. This plot demonstrates the
ability of our reptation model to explain the data. Deviations occuring for
shorter chains and large time result from tube renewal, as is obvious from
the values of T3 indicated by the ends of the full lines. Within a rough
approximation such effects will be considered in Section V.B. The discrete-
ness correction F 1 ( z ) is visible up to t x 103, and for the shorter chains this
initial range immediately crosses over to behavior dominated by tube
renewal, with no indication of an intermediate t1/4 plateau. Furthermore,
the t1/2 regime is not developed within the range of our simulations.

Fig. 6. log10(g1(N/2, N, t)/gass(t)) as function of log10(t). Points are our data. From left:
N(MC) = 20, 40, 80, 160, 320, 640. The full lines give the result (4.1), valid for motion inside
the tube. The broken lines approximate tube renewal, as explained in Section 5.2. All lines,
except for N>320, end at T 3 (N) . The horizontal broken line gives the intermediate
asymptotics, here normalized to 1 by dividing through gass = 2f t - 3 / 4 ( l 2 po) 1 / 2 t1/4.
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Fig. 7. As Fig. 6, but for the fourth moment gt(N/2, N, t ) /g a s s ( t ) . Curves are for motion
inside the tube.

B. Analysis of g 1 (N/2 , N, t)

As has been stressed and illustrated earlier,(7) the cubic invariant
g 1 (N/2, N, t) (Eq. 2.14) should show tl/4 behavior even for very small time,
with no discreteness correction. For motion inside the tube the theory yields

with A 1 ( J , t) given in Eq. (4.2). Figure 7 shows our numerical and analyti-
cal results, normalized to gass(t) = ̂ /n/2 gass(t). As expected, the t1/4

plateau is seen very clearly. Even for the shortest chain, N(MC) = 20, there
is an initial range of behavior close to t1/4. The plateau-value, however,
systematically seems to lie 3-5% below the theoretical value. We believe
that this might indicate some small effect of the interaction among the hair-
pins, renormalizing the amplitudes but not changing the power laws.

V. TUBE RENEWAL EFFECTS

A. Motion of the Endsegments

Tube renewal cannot be treated rigorously, and our approximation,
discussed in I, Section V, yields for the motion of the endsegment j = 0
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where g i ( 0 , N , s ) is given in Eq. (4.1). In Fig. 8 we have plotted
g,(0, N, t)/il/4 together with our data. Obviously our approximation
reproduces the qualitative features of the data and performs not too bad on
the quantitative level. It somewhat underestimates the mobility of the
endsegment, consistent with our finding for T3 (cf. Section III.B), but the
relative error decreases with increasing time. This is plausible since its
origin lies in a mistreatment of the time-dependent correlations which
decay on time scale T2. Both theory and experiment agree in exhibiting a
very long initial transient, much longer than found for the central segment.
Only the longest chains barely reach a t1/4 plateau. As mentioned in I,
Section V.C, this again is due to the discrete nature of the process. With
l2po fixed, the theoretical curves again are fairly insensitive to p0. We
should recall that we have corrected the data by subtracting c1 = 2 from the
motion of the endsegment (cf. Eq. (2.13)). Without that correction, the
data in the initial range would be enhanced somewhat, starting around 0.54
at t = 1.

The theory predicts that g1(0, N , t ) / g i ( N / 2 , N, t) for T0«t«T2

reaches a plateau, which in our approximation is found at a value 4 ^72.
For t > T2 this ratio should decrease again, since all segments start to move
coherently. Fig. 9 shows our results for this ratio where for the central
segment we in the theoretical result approximately took the tube renewal
into account in the form discussed in the next subsection: g 1 ( N / 2 , N, t) =
g i ( N / 2 , N, t) + 2gr(N/2, N, t). This figure should be quite characteristic for
reptation. For t < T2 it very clearly shows the enhanced mobility of the
endsegment. Note that this ratio for the Rouse model would take a value
of 2 in the initial range and drop down to 1 for t»T2. Here it takes
much larger values, coming close to our theoretical estimate. Clearly the
asymptotic plateau value can not be estimated from the experiment. This

Fig. 8. log 1 0 (g 1 (0 ,N, t ) t 1 / 4 ) as function of log10(t). Data for N(MC) = 20-640 (from left).
The curves are calculated within the approximation (5.1) and end at T 3 ( N ) .
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Fig. 9. g1(0, N, t)/g1(N/2, N, t) as function of log10(t). Data and theory like in Fig. 8. The
broken line indicates the theoretical plateau value 4 ^/Z

would need much longer chains and longer times. For t >T2 we see the
expected decrease. For t > T3 the ratio asymptotically should tend to 1.
Also this is seen, but it is clear that it needs times t>10T3 to approxi-
mately attain that limit. (In Fig. 9, T3 for N(MC)<> 160 can be taken from
the endpoints of the theoretical curves.)

We also measured the fourth moment g1(0, N, t). As we have discussed
in Appendix B of I, after some initial range the ratio g1(0, N, t)/g1(0, N, t)
should take values

where these results again are only approximate. Our data in all the regime
T0 «t« T3 scatter within bounds (1.025, 1.035), with no systematic trend
observable. This is completely consistent with the estimate (5.2), if we take
into account that within the limitations of our simulation the region
T2 «t« T3 is not properly developed.

B. Motion of an Arbitrary Segment

The mean squared displacement of an arbitrary segment j not to close
to the center of the chain for all t < T3 can be written as
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where g i ( j , N , t ) is the contribution of motion inside the tube as given in
Eq. (4.1), and g r ( j , N , t ) is the contribution of the tube renewal, which
reaches segment j roughly at a time T R ( j ) defined by

(cf. I, Eq. 5.31). In I, Section V.C and Appendix C, we have evaluated
g r ( j , N, t) in a rough approximation, based on the distribution of nm a x(t)
for a simple random walk, with hopping probability adjusted to our
theoretical result for nmax(t). Despite ignoring detailed correlation effects
this approximation yields quite reasonable results as is illustrated in Fig. 10.
We there show the motion of segments j = 20, 40, 80 in a chain of length
N(MC) = 640. In particular for j = 80 we see the onset of the initial t1/4

plateau, which for t> 103.5 is destroyed by the hairpins diffusing in from
the nearest chain end (j = 0). This in itself would lead to another plateau
at relative height ^/2 (cf. 'I, Section IV), but before this can develop two
further effects set in. Hairpins from the other chain end become important,
too, (which implies t^T2), and tube renewal effects are seen. Detailed
inspection of Fig. 10 shows small but significant deviations among experi-
ment and theory, which must be due to our neglect of correlations in gr..

Equation (5.3) ceases to be valid close to the center of the chain, since
it considers tube renewal only coming from one chain end. However, for
t < t3 processes where both chain ends within time interval t have made

Fig. 10. log10(g1(j, N, t)/gass(t)) as function of loglo(t) for j = 20, 40, 80, and N(Mc) = 640.
The broken line gives the contribution g i ( j , N, t), the full line is our result (5.3).
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Fig. 11. l o g 1 0 ( g 1 ( j , N , t ) / g a s s ( t ) ) as function of log10(t) for j = 80 and N ( M C ) =160, 640.
Curves give the full theory.

excursions of length xN/2 into the tube are rare. This suggests to apply
Eq. (5.3) also to the central segment. The result, which should underestimate
the tube renewal effects, is given by the long dashed curves in Fig. 6. The
short dashed curves follow by weighting gr(j, N, t) by a factor of 2, in
trying to take into account the symmetry of the tube renewal process. The
results look quite reasonable and clearly demonstrate that the deviations
from gi(N/2, N, t), as given by the full curves in Fig. 6, indeed are due to
tube renewal.

The motion of segments j = 80 for chains N(MC} = 160 and 640 is com-
pared in Fig. 11. It for N ( M C ) = 160 shows the additional mobility due to
a superposition of the effects from both ends.

VI. QUANTITIES INVOLVING THE CENTER-OF-MASS

Our theory at present has not been evaluated for quantities like the
center-of-mass motion, which involve two-bead correlations. We thus here
only present our numerical results and compare to the qualitative predic-
tions of reptation theory.

A. Center-of-Mass Motion

We have measured the correlation function
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Fig. 12. g c m ( t ) N(MC)/t1/2 as function of log10(t) for N(MC) = 20, 40, 80, 160, 320, 640 (from
left). Values of T2(N), calculated according to Eq. (3.7), are indicated by the arrows.

where R c m( t) is the position of the center-of-mass of the chain. Reptation
theory predicts the power laws

Note that free diffusion sets in for t » T2, in contrast to the motion of the
internal segment, where diffusional behavior is found only for t » T3 (cf.
Eq. (3.1)). As shown in Fig. 3 our data reach the diffusional regime only
for N ( M C ) < 160, allowing for an extraction of the diffusion coefficients as
discussed in Section III.A. Here we consider the short time regime.

Figure 12 shows the combination g c m(t) . N ( M C ) / t 1 / 2 . For N (MC)>320
we indeed find a plateau. To the best of our knowledge this is the first time
that the tl/2 behavior for the center-of-mass motion has been observed. The
plateau seems to approach an asymptotic value close to 1.5, but the split-
ting of the curves even in the initial range indicates the existence of sizeable
corrections to the N-dependence. For shorter chains the large mobility of
the chain ends ruins the t1/2 behavior and a glance to Fig. 3 shows that
effective power laws gcm~tx, j<x;$0.8, might be extracted, for t< T2.

B. Motion of the Central Segment Relative to the Center-of-Mass

The correlation function g2(j, N, t) defined as



1396 Baumgartner et al.

measures the motion of segment j relative to the center-of-mass. For t « T3

the center-of-mass moves much slower than any specific segment, and thus

For t »T3, however, g2(j, N, t) saturates at some j'-dependent value, that
for j = N/2 equals the mean squared radius of gyration R2

g, up to correction
of order 1 /N2. Reptation theory thus predicts

Specifically in some intermediate range g2(N/2, N, t) increases with a larger
effective power of t than in the initial range, and this phenomenon here is
not mixed up with crossover towards free diffusion. Its observation thus is
a clear signal of reptation.

Figure 13 shows our results for N ( M C ) = 80, 160, 640, normalized
to the t1/4 plateau gass(t). The sequence of the three regimes (6.4) for
N(MC) = 80, 160 is clearly seen, the data also saturating at R2,, as expected.
As also was to be expected, in the intermediate range T2<t<T3 the power
law g2~t1 /2 is not fully attained, but still the data in this plot show a

Fig. 13. log10(g2(N/2, N, t ) / g a s s ( t ) ) as function of logoff). Chain lengths are indicated. The
fat curves give gt(N/2, N, t ) /g a s s . The thin lines represent the asymptotic law g2 = R2, The thin
broken line illustrates a power-law g2 ~ t1 / 2 .
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pronounced maximum. To our knowledge this is the first time that the
intermediate t1/2 regime has clearly been identified. In Fig. 13 we included
theoretical curves for gt(N/2, N, t) (Eq. 4.1) to check whether g2(N/2, N, t)
for t« T3 indeed equals g,(N/2, N, t). Taking into account that the data
are not measured with very good statistics, being averaged over only 10
independent runs each, we find a very satisfactory agreement.

VII. CONCLUSIONS

We have performed extensive simulations of the Evans-Edwards model
up to chain lengths N = 640 and 107 Monte Carlo time steps. Our simula-
tion data show all features predicted by reptation theory, in particular:

(1) We find a strong increase in mobility of the endsegment, as com-
pared to the central segment.

(2) The simulations of the motion g2 of the central segment relative
to the center-of-mass exhibit all three time regimes predicted by reptation,
including the intermediate "t1/2" regime.

(3) The crossover time T2 to "t1/2" behavior of g2 coincides with the
crossover time to free diffusion of the center of mass.

These features clearly distinguish reptation from pure Rouse motion or a
Rouse model with randomly spaced entropic traps.(10,11)

(4) We also found the celebrated t1/4 law for motion of an inner seg-
ment, and the corresponding t1/2 law for the center of mass. However, we
need chain lengths N>100 and correspondingly long times to reliably
identify such asymptotic laws.

(5) Within the range of our simulations, the asymptotic N-dependence
predicted for the diffusion coefficient D, and the reptation time T3 is not yet
reached. From our results we estimate that chain lengths larger than
N= 103 are needed to come close to asymptotics for these quantities.

Our work shows that strong preasymptotic effects are an inherent
feature of reptation. Such effects in fact dominate the chain length and time
range covered by our simulations. The crossover regions here in particular
cover all the region T 2<t<T 3 , masking in g 1 ( j , N , t ) the expected tl/2

behavior for an inner segment. Also crossover from the initial behavior to
the t1/4-law is very slow, a feature which we trace back to the discrete
character of the basic dynamics. Indeed, this crossover is so slow that no
t1/4 regime is seen for the endsegment. As Figs. 5-11 and 13 show, this is
well explained by our theory. We indeed find very good agreement between
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our simulation data and our analytical evaluation of De Gennes' reptation
model, also in the regions where the asymptotic predictions fail. To reach
this agreement for the large variety of quantities and the large parameter
range considered, we have adjusted the four parameters p 0 S 2 , p0, c0 and
T = pt/t(MC) within the physically reasonable range. Our analytical predic-
tions are exact, as long as tube renewal is negligible. Deviations between
theory and simulations are mainly due to our only approximate analytical
evaluation of tube renewal.

Will our numerical and analytical results be stable under a change of
the microscopic structure of the system? This is a question of many dif-
ferent facets. It is expected that certain types of time-independent disorder
in the surrounding, entropic traps(10) in particular, may ruin reptation all
together. Also the consequences of relaxation of the surrounding, like in a
melt, at present are not well known. Restricting ourselves to the original
reptation scenario, i.e., to motion through an ordered array of obstacles,
we should consider the effect of excluded volume interactions among the
beads of the chain. In I, Section II.C, we have given reasons why we believe
this to be basically irrelevant here, changing only the embedding of the
tube into real space as well as the time scale. More serious is the fact that
both in our simulations and our analytical work we use a very narrow
tube. Allowing for more degrees of freedom of the chain per unit spacing
of the obstacle lattice, we certainly will increase microstructure correc-
tions related to excursions of the bead considered from the center of the
tube, and at the same time the discreteness corrections, playing such an
important role in the initial time range within our model, will decrease.
These effects to some extent may compensate each other. Indeed, in some
preliminary simulation using a spring-and-bead chain in continuous space
and obstacles of finite diameter in a regular lattice of wider spacing, we
found results closely resembling the initial time range of our model presen-
ted here. (With this other model we, however, were unable to reach chain
lengths and a time range where reptation predictions like the t1/4 law
properly are found. Rather we stayed with effective t1/3 behavior familiar
from previous work. With regard to the range of chain lengths and times
this is completely consistent with the present findings.) We thus expect that
certainly on the qualitative and presumably also on a semiquantitative level
our results stay valid for wider tubes even in the initial time range. Of
course a naive rescaling of our results in such a problem involving several
time- and length-scales may be questionable.

We finally should comment on consequences of this work for previous
work on polymer motion through more realistic environments. Let us first
consider polymer motion through a fixed disordered background of other
chains, roughly modelling a gel. There the general folklore tells us that the



reptation scenario is valid. To examine this we appeal to ref. 12, where the
motion of a long chain (N = 200) was simulated. Fig. 6 of that work indeed
shows more than one decade of t1/4 behavior for g 2 ( N / 2 , N , t ) , i.e, the
motion of the central segment relative to the center-of-mass. However, the
characteristic increase of the effective power at the end of the t1/4 range, as
shown in Fig. 13, is missing, this range fairly abruptly ending in saturation.
Also gl and g2 deviate rapidly, gl reaching only an effective tl/3 law. Both
these observations are not compatible with our reptation results, and this
conclusion is strengthened by a glance to the motion of the center-of-mass,
as shown in Fig. 7, ref. 12. To our feeling this suggests that the published
work shows disorder effects (10 ,11 ,13) rather than reptation.

With regard to polymer motion in melts the situation is even less clear.
Again considering as example some extensive published work,(14) we note
that many results shown there resemble our results found for short chains.
In particular, the ratio g1(0, N, t ) / g 1 ( N / 2 , N, t) reaches values of order 2.7,
i.e., larger than for a Rouse chain. For g2 no tendency towards tl/2

behavior is seen, but this might be due to the effective shortness of the
chains, reaching only of the order of 6 entanglement lengths. Thus it is not
unlikely that these results reflect "reptational" behavior of a very short
effective chain.

Clearly with regard to such more complicated systems much work still
has to be done, and we hope to have contributed to this task by clearly
exhibiting the quantitative consequences of the reptation model.
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